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Abstract
We study the application of a data-enabled predictive control (DeePC) algorithm
for position control of real-world nano-quadcopters. The DeePC algorithm is a
finite-horizon, optimal control method that uses input/output measurements
from the system to predict future trajectories without the need for system iden-
tification or state estimation. The algorithm predicts future trajectories of the
quadcopter by linearly combining previously measured trajectories (motion
primitives). We illustrate the necessity of a regularized variant of the DeePC
algorithm to handle the nonlinear nature of the real-world quadcopter dynamics
with noisy measurements. Simulation-based analysis is used to gain insights into
the effects of regularization, and experimental results validate that these insights
carry over to the real-world quadcopter. Moreover, we demonstrate the reliability
of the DeePC algorithm by collecting a new set of input/output measurements
for every real-world experiment performed. The performance of the DeePC
algorithm is compared to Model Predictive Control based on a first-principles
model of the quadcopter. The results are demonstrated with a video of successful
trajectory tracking of the real-world quadcopter.
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1 INTRODUCTION

The analysis and design of control systems is traditionally addressed using a model-based control approach where a model
for the system is first identified from data, and the control policy is then designed based on the identified model. The
system identification step is often the most time-consuming and challenging part of model-based control approaches.1,2

System identification often requires expert knowledge and partial system models,3 and unless the control objective is
taken into account during the identification process, the obtained model may not be useful for control.4 These observa-
tions as well as the advancements in sensing and computation technologies have motivated a tendency toward data-driven
control methods yielding many successes.5-8 Such methods bypass the traditional model-based control approach, and
design control inputs directly from data. These so-called direct data-driven methods for control design benefit from ease of
implementation on complex systems where system identification is too time-consuming and cumbersome. Among these
data-driven methods are learning-based and adaptive Model Predictive Control (MPC) approaches, where the unknown
system dynamics are substituted with a learned model which maps inputs to output predictions.9-13 However, such
methods still require learning an input/output model and often involve (stochastic) function approximation by means
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of neural networks or Gaussian processes, which come with their own tuning challenges and can be inconsistent across
applications.14

One algorithm that does not require any function learning or system identification is the so-called data-enabled predic-
tive control (DeePC) algorithm.15 Instead, this algorithm directly uses previously measured input/output data to predict
future trajectories. The previously measured input/output data from the system act as motion primitives that serve as a
basis for the subspace of possible system trajectories. The DeePC algorithm builds on the seminal work on linear time
invariant (LTI) systems by Willems et al., specifically what is known as the fundamental lemma in behavioral systems
theory.16 This result was used by Markovsky et al. for the first time for control purposes allowing for the synthesis of
data-driven open loop control for LTI systems.17 The DeePC algorithm extended this method to closed-loop control and
was implemented in a receding horizon optimal control setup. This algorithm was shown to be equivalent to MPC for
deterministic LTI systems,15 and was later extended giving guarantees on recursive feasibility and closed-loop stabil-
ity.18 Additionally, numerical case studies have illustrated that the algorithm performs robustly on some stochastic and
nonlinear systems and often outperforms system identification followed by conventional MPC.19-21

Several other data-driven control methods have been proposed that make use of input/output data in similar ways as
DeePC. One method uses the fundamental lemma to synthesize stabilizing output feedback controllers solving the lin-
ear quadratic regulation problem using only input/output data.22 Other methods use previously measured input/output
trajectories as motion primitives to compute minimum energy inputs,23 or produce new control inputs for LTI systems.24

All of these methods, including the DeePC algorithm, rely on the linearity property. For nonlinear systems, data-driven
control methods that make use of motion primitives to synthesize new trajectories have been proposed.25,26 Common to
these methods is a nonlinear data-fitting step in the generation of the motion primitives. One approach uses sparse iden-
tification to fit the raw data to a predefined library of nonlinear primitives.25 An approach tailored to robotics applications
learns motion primitives from demonstration trajectories by estimating the parameters of nonlinear Gaussian basis func-
tions.26 By contrast, DeePC directly uses raw data sequences as motion primitives, and there is no data-fitting step. It relies
on a robustifying regularization, which is incorporated directly in the optimal control objective, to address nonlinearity
and stochasticity.15,19,27

The focus of this paper is on implementing this robustified, regularized variant of the DeePC algorithm for the first
time on a real-world system. In particular, we seek to analyze how the algorithm can be applied for real-time control of a
quadcopter whose dynamics are nonlinear and the measurements are corrupted by noise. The quadcopter is a common
benchmark system for verifying data-driven control methods.7,8,28-30 It makes for an interesting benchmark because it is
nonlinear, open-loop unstable and has fast dynamics. Our main aim is to gain valuable insights on this benchmark which
will assist in the implementation of our novel data-driven control method across multiple systems.

Contributions: The DeePC algorithm is implemented for the first time on a real-world system bridging the gap from
theory to application. Through this, we gain key insights into choices of the algorithm’s hyperparameters, providing tun-
ing guidelines. We demonstrate that the DeePC algorithm is computationally tractable and suitable for real-time control.
A video of the DeePC algorithm performing figure 8 trajectory tracking on the real-world quadcopter is provided here:
https://doi.org/10.3929/ethz-b-000493419.
Outline: The real-world quadcopter system, problem statement, and DeePC algorithm are introduced in Section 2. The
main contributions appear in Section 3, where we present simulation analysis and experimental results, as well as a video
of successful trajectory tracking of the quadcopter. We conclude in Section 4 stating some future directions of research.

2 SETTING

We first present the quadcopter system in Section 2.1, providing details about its input/output channels, and the
first-principles modeling that is used for simulation-based analysis. We then formally state in Section 2.2 the quadcopter
control goal as a general finite-horizon, discrete-time, optimal control problem. Section 2.3 recalls the DeePC algorithm,
showing how it can be used to address both LTI and nonlinear stochastic control problems in a data-driven way.

2.1 Quadcopter

For the purpose of simulation, we use a nonlinear, continuous-time quadcopter model. Full details of the model derivation
are provided in other works.31,32 Here we highlight the key definitions, equations, and control architecture. The model
presented is also the starting point for the model-based control methods that are used for comparison in Section 3.4.
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F I G U R E 1 Perspective view (left) and top view (right) of the quadcopter model used for simulation; the annotations are defined in
Section 2.1. The (red, green, blue) arrows represent the inertial and body frames of reference, the dashed black circles indicate the direction of
rotation of the propellers, and the purple arrows show the forces and torques acting on the quadcopter model.

We define the model in terms of an inertial frame of reference, denoted (I), and a body frame of reference attached to
the quadcopter, denoted (B), with the origin of frame (B) fixed at the quadcopter’s center-of-gravity. The position of the
body frame with respect to the inertial frame is denoted by p⃗ = (px, py, pz). We use Euler angles to describe the orientation
of the body frame relative to the inertial frame, and following the ZYX intrinsic Euler angle convention, we denote the
roll, pitch, and yaw angles by 𝜓⃗ = (𝛾, 𝛽, 𝛼) respectively. The angular rates about the body frame axes are denoted by
𝜔⃗ = (𝜔x, 𝜔y, 𝜔z). Thus, the model has 12 states, (p⃗, ̇⃗p, 𝜓⃗ , 𝜔⃗), and the inputs to the model are the thrust force from each
propeller, denoted fi, i = 1, … , 4. The parameters required for the quadcopter model are the mass m, the mass moment of
inertia J, the body frame coordinates for the center-of-thrust of each propeller (dxi , dyi ), and the constant of proportionality
d𝜏i that approximates a linear relation between the torque due to propeller drag and the thrust force fi. Figure 1 visualizes
this definition of the quadcopter. The nonlinear, continuous-time equations of motion are readily derived as

̈⃗p = 1
m

4∑
i=1

fi

⎛⎜⎜⎜⎝
cos(𝛼) sin(𝛽) cos(𝛾) + sin(𝛼) sin(𝛾)
sin(𝛼) sin(𝛽) cos(𝛾) − cos(𝛼) sin(𝛾)

cos(𝛽) cos(𝛾)

⎞⎟⎟⎟⎠ −
⎛⎜⎜⎜⎝

0
0
ag

⎞⎟⎟⎟⎠ , (1a)

̇⃗𝜔 = J−1

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

∑4
i=1 fidyi∑4

i=1 − fidxi∑4
i=1 fid𝜏i

⎞⎟⎟⎟⎠ − 𝜔⃗ × J𝜔⃗
⎞⎟⎟⎟⎠ , (1b)

where ag is the acceleration due to gravity. An important feature of these equations is that the equilibrium inputs are
the same at all positions p⃗ and at all yaw angles 𝛼.

Most off-the-shelf quadcopters are equipped with an on-board controller that allows the user to specify references
instead of directly specifying the thrust force for each propeller, we refer to this as the inner controller. Often the manu-
facturer does not provide details of the inner controller and does not allow the user to bypass it. We consider a quadcopter
with an inner controller that uses the data from the onboard inertial measurement unit (IMU) to track user provided
references for the angular rate about the x(B) and y(B) axes of the body frame and maintains a constant yaw angle.
We leave the inner controller as implemented by the manufacturer, and consider the following three inputs to the
system:

• the body rate references about the x(B) and y(B) axes, denoted by 𝜔ref,x and 𝜔ref,y respectively, and
• the total thrust force from the propellers combined, denoted by ftot.
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F I G U R E 2 Block diagram of the cascaded control architecture used for the simulations and experiments. In an off-the-shelf
quadcopter system, the inner controller is typically already implemented. Here we focus on the synthesis of the outer controller.

The outer controller adjusts these three inputs to ensure that the quadcopter tracks a position reference provided
by the user, based on feedback of position and orientation measurements, p⃗, 𝛾 , and 𝛽, provided by an external motion
capture system.33,34 Our aim is to design a data-driven outer controller for this 3 input, 5 output off-the-shelf quadcopter
system (see Figure 2 for a schematic of the architecture). Previous work has demonstrated that it is possible to design in
simulation a data-driven controller from position and orientation measurements to propeller thrusts directly.15 As the goal
of this work is to control a real-world quadcopter, we consider that the inner controller on the off-the-shelf quadcopter
constitutes a part of the black-box system under investigation.

2.2 Problem statement

Let us consider a discretized version of the quadcopter dynamics (1), which we denote by

x(t + 1) = f (x(t),u(t)),
y(t) = h(x(t),u(t)), (2)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp are, respectively, the state, control input, and output at time t ∈ Z≥0. Note
that even though the continuous-time dynamics (1) are known, an analytic expression does not exist for the nonlinear
discretized dynamics described by mappings f ∶ Rn × Rm → Rn and h ∶ Rn × Rm → Rp in (2). We purposefully abstract
notation above to highlight the fact that the problem statement is not unique to a quadcopter, but can be applied to many
systems with nonlinear dynamics whose linearization about the operating point is a controllable and observable LTI
system (see Section 2.3). For the quadcopter, we have that, u(t) = (ftot, 𝜔ref,x, 𝜔ref,y) ∈ R3, and y(t) = (px, py, pz, 𝛾, 𝛽) ∈ R5.
The state x(t) includes the quadcopter position, velocity, Euler angles, angular velocities, motor currents, and the states
of the inner controller. From these quantities, u(t) and y(t) are what we have available for controller synthesis, while the
state x(t) is regarded as unknown.

The problem of constrained finite-horizon optimal control is considered. Given the current time t ∈ Z≥0, a time hori-
zon Tf ∈ Z≥0, input and output constraint sets  ⊆ Rm,  ⊆ Rp, the goal is to design a sequence of admissible control
inputs {u(t + i)}Tf−1

i=0 ⊂  such that when applied to system (2), the resulting outputs {y(t + i)}Tf−1
t=0 ⊂ Rp lie in the con-

straint set  and minimize the stage costs given by cost function c ∶ Rp × Rm → R≥0. More formally, we wish to solve the
following optimization problem:

minimize
u,y

Tf−1∑
i=0

c(y(t + i),u(t + i))

subject to x(t + i + 1) = f (x(t + i),u(t + i)), ∀i ∈ {0, … ,Tf − 1}

y(t + i) = h(x(t + i),u(t + i)), ∀i ∈ {0, … ,Tf − 1}

u(t + i) ∈  , y(t + i) ∈  , ∀i ∈ {0, … ,Tf − 1}

x(t) = x̂(t), (3)
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where x̂(t) is an estimate of the state at time t, typically computed by filtering the sequence of past inputs and outputs.
Problem (3) is solved in a receding horizon fashion and is widely known as output-feedback MPC. The cost function c
can be designed by the user to attain various control objectives (e.g., regulation or trajectory tracking).

Without knowledge of system (2), solving problem (3) is no longer possible as we are unable to predict forward trajec-
tories of the system, and estimate the current state x(t). To resolve these issues, we approach the problem in a data-driven
manner. In particular, we use the DeePC algorithm,15 which replaces the constraints requiring system knowledge by raw
input/output data to solve an optimization problem similar to (3), and, under assumptions to be recalled next, directly
equivalent to (3).

2.3 Data-enabled predictive control

2.3.1 DeePC for deterministic LTI systems

The DeePC algorithm has been shown to be an equivalent data-driven method for solving (3) when the unknown
system (2) is a deterministic LTI minimal realization, that is, when the dynamics in (2) are of the form

x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), (4)

where A,B,C,D are matrices of appropriate dimensions. Note that (4) being a minimal realization implies controllability
and observability properties of the system. Several modifications have also been proposed for robustifying the algorithm
against stochastic disturbances.19,27 We first introduce the necessary preliminaries, then recall the DeePC algorithm as
applied to LTI systems of the form (4), followed by the robustifying regularizations that allows the algorithm’s adaptation
for the nonlinear quadcopter system (2) with noisy measurements.

Let the Hankel operator which maps a sequence of signals u = {u(i)}T
i=1 ⊂ Rm to a Hankel matrix * with L ∈ Z>0 block

rows be denoted by

ℋL(u) ∶=

⎛⎜⎜⎜⎜⎜⎜⎝

u(1) u(2) … u(T − L + 1)

u(2) u(3) … u(T − L + 2)

⋮ ⋮ ⋱ ⋮

u(L) u(L + 1) … u(T)

⎞⎟⎟⎟⎟⎟⎟⎠
.

Definition 1 (Persistency of Excitation16). Let L ∈ Z>0. The sequence of signals u = {u(i)}T
i=1 ⊂ Rm is called persistently

exciting of order L if the Hankel matrix ℋL(u) has full row rank.

Note that the property of being persistently exciting of order L requires the length of the sequence of signals be large
enough; in particular, the length must be such that T ≥ (m + 1)L − 1. Intuitively, a persistently exciting sequence of signals
must be sufficiently long and sufficiently rich to excite all aspects of the dynamics (4). The DeePC algorithm relies on the
following fundamental result.

Theorem 1 (Theorem 1 of Reference 16). Let Td,L ∈ Z>0. Let(ud, yd) = {(ud(i), yd(i))}
Td
i=1 be a trajectory of (4) of length

Td such that{ud(i)}
Td
i=1 is persistently exciting of order L + n. Then (u, y) = {(u(i), y(i))}L

i=1 is a trajectory of (4) if and only if
there exists g ∈ RTd−L+1 such that (

ℋL(ud)
ℋL(yd)

)
g =

(
u
y

)
.

The result above states that the subspace spanned by the columns of the Hankel matrix
(
ℋL(ud)
ℋL(yd)

)
corresponds exactly

to the subspace of possible trajectories of (4). Hence, the Hankel matrix may serve as a nonparametric model for (4), one
that is simply constructed from raw time-series data and does not require any learning.

*We slightly deviate from the classical definition of a Hankel matrix, which requires it to be square, and allow general dimensions.
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In what follows, we will see how the above theorem allows us to perform implicit state estimation as well as predict
forward trajectories of the unknown system allowing us to solve an optimization problem equivalent to (3) when the
system is of the form (4).

Data collection: Let Td,Tini ∈ Z>0 be the length of data collection and the time horizon used for initial condition esti-
mation, respectively. Suppose (ud, yd) = {(ud(i), yd(i))}

Td
i=1 is a sequence of input/output measurements collected from (4)

during an offline procedure. Suppose further that the input {ud(i)}
Td
i=1 is persistently exciting of order Tini + Tf + n. We

partition the input/output measurements into Hankel matrices(
Up

Uf

)
∶= ℋTini+Tf(ud),

(
Yp

Yf

)
∶= ℋTini+Tf(yd), (5)

where Up consists of the first Tini block rows ofℋTini+Tf (ud) and Uf consists of the last Tf block rows ofℋTini+Tf (ud) (similarly
for Yp and Yf). The data in Up and Yp will be used in conjunction with past data to perform implicit initial condition
estimation, and the data in Uf and Yf will be used to predict future trajectories.

Data-driven control and estimation: Let (uini, yini) = {(uini(t + i), yini(t + i))}−1
i=−Tini

be the Tini most recent past
input/output measurements from the system. By Theorem 1, (u, y) = {u(t + i), y(t + i)}Tf−1

i=0 is a possible future trajectory
of (4) if and only if there exists g ∈ RTd−Tini−Tf+1 satisfying

⎛⎜⎜⎜⎜⎜⎝

Up

Yp

Uf

Yf

⎞⎟⎟⎟⎟⎟⎠
g =

⎛⎜⎜⎜⎜⎜⎝

uini

yini

u
y

⎞⎟⎟⎟⎟⎟⎠
. (6)

Every column of the Hankel matrix is a trajectory of the system (motion primitive), and any new trajectory (right-hand
side of (6)) can be synthesized by a linear combination of these motion primitives. Hence, given an input sequence u to be
applied to the system, one can solve the first three block equations of (6) for g, and the corresponding output sequence is
given by y = Yfg. The top two block equations in (6) are used to implicitly fix the initial condition from which the future
trajectory departs. To uniquely fix the initial condition from which the future trajectory departs, one must set Tini ≥ 𝓁,
where 𝓁 is the lag of the system (i.e., the number of past measurements required to uniquely identify the current state
of the system through back-propagation of the dynamics (4)). This in turn implies that the predicted trajectory given by
y = Yfg is unique.17 Note that the lag 𝓁 of the system is a priori unknown, but is upper bounded by n. Hence, knowing an
upper bound on the state dimension n of the system is sufficient to obtain unique predictions.

The Hankel matrix in (6) simultaneously performs state estimation and prediction, and can thus be used as a predictive
model for system (4). Substituting (6) for the unknown dynamics (4) in the optimization problem (3) gives rise to the
following data-driven optimization problem allowing for the computation of optimal control inputs without knowledge
of a system model:

minimize
u,y,g

Tf−1∑
i=0

c(y(t + i),u(t + i))

subject to

⎛⎜⎜⎜⎜⎜⎝

Up

Yp

Uf

Yf

⎞⎟⎟⎟⎟⎟⎠
g =

⎛⎜⎜⎜⎜⎜⎝

uini

yini

u
y

⎞⎟⎟⎟⎟⎟⎠
u ∈  Tf , y ∈ Tf , (7)

where  Tf is the Tf-fold cartesian product of  (similarly for Tf ). The optimization problem (7) was shown to be equiva-
lent to the MPC problem given in (3) when the unknown system is of the form (4).15 Note that the optimization problem (7)
does not include any parameters that need to be estimated from data. The Hankel matrix directly uses raw data without
further processing, the cost function c is specified by the practitioner, and the optimization variable g is solved for in every
online iteration of the algorithm. There is no separate model-fitting or denoising step.
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2.3.2 Regularized DeePC for nonlinear noisy systems

The goal of this paper is to implement the above DeePC optimization problem to control a real-world quadcopter described
above in Section 2.1. As the quadcopter dynamics do not satisfy the deterministic LTI assumption necessary to show the
equivalence of the MPC optimization problem (3) and the DeePC optimization problem (7), regularizations are needed.
Indeed, when the input/output data used for the Hankel matrix in (7) is obtained from a nonlinear system or is cor-
rupted by process or measurement noise (as is the case with any real-world application) the subspace spanned by the
columns of the Hankel matrix no longer coincides with the subspace of possible trajectories of the system. In fact, in
any real-world problem setting the Hankel matrix used for predictions in (7) will generally be full rank. Hence, the Han-
kel matrix constraint will imply that any trajectory is possible leading to poor closed-loop performance of the DeePC
algorithm. Furthermore, the online measurements yini used to set the initial condition from which the predicted trajec-
tory departs are corrupted by measurement noise, and thus may cause poor predictions. Including a 2-norm penalty on
the difference between the estimated initial condition Ypg and the measured initial condition yini coincides roughly with
a least-square estimate of the true initial condition.

Regularization has been proposed as one method to deal with these difficulties and extend the DeePC algorithm to
nonlinear noisy systems.15 We present a variation of these regularizations in the following regularized DeePC optimization
problem

minimize
u,y,g

Tf−1∑
i=0

c(y(t + i),u(t + i)) + 𝜆s||Ypg − yini||22 + r(g)

subject to
⎛⎜⎜⎜⎝
Up

Uf

Yf

⎞⎟⎟⎟⎠ g =
⎛⎜⎜⎜⎝
uini

u
y

⎞⎟⎟⎟⎠
u ∈  Tf , y ∈ Tf , (8)

where 𝜆s ≥ 0, and r ∶ RTd−Tini−Tf+1 → R≥0 is a function used to regularize g. In comparison to the original regularized
DeePC formulation,15 we use abstract stage cost and regularization functions c and r, respectively. These will be made
concrete in Section 3.2. We also use the 2-norm instead of the 1-norm to penalize the difference between the estimated ini-
tial condition Ypg and the measured initial condition yini. Algorithm 1 below summarizes the DeePC procedure where (8)
is implemented in a receding horizon fashion.

Algorithm 1. Regularized DeePC

Input: d, Tini, Tf, cost function c, 𝜆s, constraint sets  and  , regularization function r, data sequence {(ud(i), yd(i))}
Td
i=1,

the Tini most recent past input/output measurements (uini, yini).

1. Set g⋆ equal to the solution of (8).
2. Compute the optimal input sequence u⋆ = Uf g⋆.
3. Apply input (u(t),… ,u(t + s − 1)) = (u⋆0 ,… ,u⋆s−1) for some s ≤ Tf.
4. Set t to t + s and update uini and yini to the Tini most recent past input/output measurements.
5. Return to 1.

It has been shown that when r(g) = 𝜆g||g||q, where 𝜆g ≥ 0 and q ∈ Z>0 ∪ {+∞}, problem (8) coincides with a distribu-
tionally robust problem formulation. Using such a q-norm regularization for the decision variable g induces robustness
to all systems (nonlinear or stochastic) that could have produced the data in the Hankel matrices (5) within an s-norm
induced Wasserstein ball around the data samples used, where 1

q
+ 1

s
= 1.19,27

The computational complexity of (8) can be characterized by the number of decision variables and constraints. There
are (m + p)Tf + (Td − Tini − Tf + 1) decision variables, mTini + (m + p)Tf equality constraints, and 2(m + p)Tf inequality
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ELOKDA et al. 8923

constraints, when  Tf and Tf are box constraint sets. As is expected of a finite-horizon optimal control method,
the computational complexity grows with the time horizon Tf. Furthermore, Tini and Td also affect the computa-
tional complexity. The former is related to the observability of the unknown system (2), the latter to the system’s
dimensionality.

3 RESULTS

In this section, we present the results and insights gained by applying DeePC Algorithm 1 described in Section 2.3 for
trajectory tracking of the quadcopter system described in Section 2.1. The challenges posed by this application are:

1. The nonlinear and stochastic nature of the quadcopter system requires that the regularization function in (8) and the
other hyperparameters offered by the DeePC Algorithm 1 be chosen appropriately for the application at hand. This is
addressed by the simulation-based analysis in Section 3.2.

2. The simulation model is a simplification of the real-world quadcopter system which neglects complex aerodynamic
phenomena, drag, delays in actuation, communication and sensing, and process noise. Essentially, the simulation
model contains merely the bare Newtonian dynamics, and even those are subject to parametric uncertainties. There-
fore, it is not clear that simulation-based parameter selection can be directly transferred to real-world experiments.
This is addressed by the experimental results in Section 3.3.

The real-world results were collected from laboratory experiments conducted using a motion capture system to provide
measurements of the position and orientation of the quadcopter at a frequency of 25 Hz. Thus, the sampling time in the
discrete-time dynamics (2) is 40 ms. The laboratory setup was developed as part of a previous work.35 To provide the reader
with an idea for the scale of the setup, the Crazyflie 2.036 quadcopter weighs 28 grams and a 12 cubic meter flying space
was available. Further details on the setup are given in Section 3.3 where the experimental results are presented. The
simulation environment uses the model presented in Section 2.1 and the model parameters identified in a previous work.37

These model parameters do not match the specific Crazyflie 2.0 used for the experiments, partially due to additional
hardware required for detection by the motion capture system.

3.1 Data collection

As described in Section 2.3, the input signal used in the Hankel matrices appearing in (7) must be persistently exciting
of sufficient order. This data can be collected by injecting a random input sequence, or by performing a manual flight
experiment where a human performs the function of the outer controller. For repeatability of results, we chose the for-
mer. Two possible choices of random input signals to be applied during the data collection phase are a pseudorandom
binary sequence (PRBS) designed for multiple inputs,38 or a white noise signal. Both types of perturbations were tested in
simulations and showed a negligible difference in the performance of the DeePC algorithm. The results in this paper are
presented using a PRBS input signal during the data collection phase because it generally provides better performance for
classical system identification techniques.39 The input signals applied for data collection consist of the PRBS excitation
signal added to an existing controller that maintains the quadcopter around the hover state. The data collected was used
to populate the Hankel matrices in (5).

3.2 Simulation-based analysis and insights

The aim of our controller is to track a steady-state reference (ur, yr) ∈ Rm × Rp. We therefore consider as the cost function
c the quadratic tracking error between the prediction and the given steady state reference, that is,

c(y,u) = (y − yr)TQ(y − yr) + (u − ur)R(u − ur), (9)

where Q ≽ 0, R ≻ 0. This cost function is a generalization to the original regularized DeePC15 which considers a nonzero
steady-state reference control input ur. The values chosen for Q, R, and ur are given in Appendix A. The time horizon was
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chosen as Tf = 25 which corresponds to 1 second in real time. Furthermore, we choose the regularization function in (8)
as the following

r(g) = 𝜆g ||g − gr||q, with gr =

⎛⎜⎜⎜⎜⎜⎝

Up

Yp

Uf

Yf

⎞⎟⎟⎟⎟⎟⎠

† ⎛⎜⎜⎜⎜⎜⎝

1Tini ⊗ ur

1Tini ⊗ yr

1Tf ⊗ ur

1Tf ⊗ yr

⎞⎟⎟⎟⎟⎟⎠
, (10)

where 𝜆g ≥ 0, q ∈ Z>0 ∪ {+∞}, the vector1Tini ⊗ ur denotes the stacked column vector consisting of Tini copies of ur (sim-
ilarly for 1Tini ⊗ yr), and † denotes the pseudo-inverse. The vector gr in (10) can be thought of as a “steady-state trajectory
mapper” which linearly combines columns of the Hankel matrix to match the given steady-state reference trajectory.
Among the possibly infinite number of vectors g that match the steady state, this is the one with the smallest 2-norm.
In the case when there is no g that matches the steady state, gr matches it as closely as possible in the 2-norm sense.
However, this case is unlikely in practice since the Hankel matrix is generally full rank as discussed in Section 2.3. Penal-
izing the difference between g and gr ensures that the stage cost in (8) is zero when the quadcopter is at the steady-state
reference (ur, yr). This is another generalization to the original regularized DeePC,15 where only g is penalized, and the
regularization norm q is chosen to be the 1-norm. We will consider both the 1-norm and the 2-norm in this paper.

Under these design choices, the regularized DeePC optimization problem (8) offers several hyperparameters given by:

• Td, the total number of data points used to construct the Hankel matrices in (5),
• Tini, the time horizon used for initial condition estimation,
• 𝜆s, the weight on the softened initial condition constraint,
• 𝜆g, the weight on the regularization of g,
• q, the norm used to regularize g in (10), and
• p, the number of outputs used to construct the Hankel matrices in (5).

Although p may seem fixed by the output measurements available, in the case of quadcopter control, it is reasonable to
consider whether to use all measurements for position control, that is, set p = 5, or use only the position measurements,
that is, set p = 3.

Note that if one were to approach the control problem through system identification followed by MPC, a number
of hyperparameters would also need to be selected. For example, the MATLAB subspace system identification method
N4SID requires choosing a model order, weighting scheme, forward estimation and backward prediction horizons,
weighting prefilter, output weighting matrix, and other hyperparameters. More generally, system identification for quad-
copters requires significant engineering, and previous works resort to the use of partial model knowledge, such as the
presence of integrators40 or the decoupled nature of the dynamics.41,42 This is in addition to the use of full model knowl-
edge in simulating the system and generating the input/output data for identification in these works. Further, the DeePC
hyperparameters affect the closed-loop control performance directly and not through an offline system identification step,
which means that they can be easily adapted online on the arrival of new data.

To investigate the effect of the hyperparameters for DeePC, we perform a grid search over the ranges

Tini ∈ {1, … , 10}, 𝜆s ∈ [105, 1010], 𝜆g ∈ [100, 108], q ∈ {1, 2}, p ∈ {3, 5}, (11)

and a range of Td values that satisfy the minimum data length prescribed by the persistency of excitation requirement
from Definition 1. Note that the prediction horizon Tf, and the cost matrices Q and R are not parameters unique to
the regularized DeePC optimization problem (8), but are also parameters for MPC. For the sake of clarity we do not
consider them as hyperparameters in the simulation-based analysis. Moreover, fixing Tf = 25, and Q and R as in Appendix
A, was sufficient for achieving good closed-loop performance, and allows for a focus on the other hyperparameters of
DeePC. The time horizon used for initial condition estimation Tini, and the number of outputs p are also not unique to
DeePC, since they are used in some model-based control approaches which, for example, perform receding horizon state
estimation. We consider them as hyperparameters in the simulation-based analysis in order to gain insights on the implicit
state estimation capability of DeePC. For each combination of hyperparameters the following procedure is carried out in
simulation. The same procedure is used for the real-world experiments presented in Section 3.3.
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F I G U R E 3 Influence of Td (left) and Tini (right) on the tracking error. For each point plotted, the tracking error is the minimum
achieved over all other hyperparameter combinations considered, with Tini = 6 for the left-hand plot, and Td = 331 for the right-hand plot.
Evaluating the expression in (12), the Hankel matrix becomes square at Td = 223 for p = 3 and at Td = 287 for p = 5.

Procedure 1. [Procedure for collecting results in simulation and real-world experiments] For simulation, the system
used was a model of the off-the-shelf quadcopter system with dynamics (1) and architecture as in Figure 2, where mea-
surements were affected by zero-mean Gaussian noise with covariance matrix Σy as in Appendix A. For the real-world
experiments, the system used was the Crazyflie 2.0.

1. The quadcopter is brought to hover at y = (0, 0, 1) with a stabilizing controller. The system is excited by adding a PRBS
signal to the output of the stabilizing controller, as per Section 3.1, for the input/output data collection step of the
DeePC algorithm.

2. The regularized DeePC optimization problem (8) is setup with the input/output data collected in step 1.
3. The DeePC controller is turned on and the quadcopter is commanded to track a diagonal step up from y(0) =

(−0.5,−0.5, 0.5) to yr = (0.5, 0.5, 1.5).
4. The resulting closed-loop tracking error is measured as

∑Te−1
t=0 ||y(t) − yr||22, where t = 0 is the time index at the start of

the step trajectory and Te = 250 is the chosen experiment length, which corresponds to 10 seconds in real time.

3.2.1 Sensitivity to Td and Tini

As discussed in Section 2.3, for LTI systems the DeePC algorithm requires a minimum number of data points to satisfy
the persistency of excitation property. Since we apply the DeePC algorithm to a nonlinear system subject to measurement
noise, it becomes unclear as to how many data points are needed in order to construct the Hankel matrices in (5). Figure 3
shows the sensitivity analysis of Td and Tini on the tracking error. Figure 3 (left) shows the influence of Td on the tracking
error, where for each value of Td considered we show the smallest tracking error achieved over all combinations of the
other hyperparameters in the grid given by (11) with Tini = 6. Similarly, Figure 3 (right) shows the influence of Tini on the
tracking error, where for each value of Tini considered we show the smallest tracking error achieved over all combinations
of the other hyperparameters in the grid given by (11) with Td = 331.

The key insight from the grid search result in Figure 3 (left) is the distinct improvement in the tracking error of the
regularized DeePC algorithm when the number of data points is chosen such that the Hankel matrix appearing in the
DeePC optimization problem (8) has at least as many columns as rows. Since the Hankel matrix is generally full rank when
the data is obtained from a nonlinear noisy system, having a square Hankel matrix ensures that the subspace spanned by
its columns contains the actual subspace of possible trajectories of the system. When the Hankel matrix is slim (i.e., has
less columns than rows), this property may not hold; the subspace spanned by the columns of a slim Hankel matrix may
not contain the subspace of possible trajectories of the system. This insight is summarized as the following inequality
which states that Td should be chosen to be larger than both the minimum amount needed for persistency of excitation
in the LTI case and the minimum amount such that the Hankel matrix in (8) is square

Td ≥ max{(m + 1)(Tini + Tf + n) − 1, (m + p + 1)(Tini + Tf) − 1}. (12)
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8926 ELOKDA et al.

F I G U R E 4 Influence of 𝜆g and 𝜆s on the tracking error. All other hyperparameters are fixed to the values described in the text. The
coloured shading is restricted to the interval (36,120) to sufficiently display the shape of the region shown. The cost increases steeply in
regions where the cost is greater than 120, thus the plot is clipped for values greater than 120 for the sake of clarity.

Here n = 8 is the number of states corresponding to a minimal realization of (1) linearized about hover. Note that
the minimum number of data points such that the Hankel matrix in (8) is square is directly affected by the number of
outputs p. Hence, a larger p requires more data points to satisfy the lower bound in (12) and thus results in more decision
variables in problem (8). The distinct improvement in the tracking error when Td is chosen such that the Hankel matrix
in (8) is square is also observed in a power system application of DeePC.21

A similar trend is observed in Figure 3 (right) for Tini where good tracking performance is achieved for values larger
than Tini = 2 for p = 5, and Tini = 3 for p = 3. This suggests that more past measurements are needed to estimate the
initial condition of the unknown system when p = 3. We observed, however, that setting Tini = 6 gives steadier flight of
the quadcopter. Under noisy measurements, increasing Tini leads to better initial condition estimates. For the remaining
results (simulation and experimental), Procedure 1 was conducted with the number of data points Td = 331 and with
Tini = 6. This resulted in good tracking error performance for both p = 3 and p = 5, while keeping the size of the DeePC
optimization problem (8) small enough to be computationally tractable in real-time.

3.2.2 Sensitivity to 𝜆s, 𝜆g, q, and p

Figure 4 shows the results from the grid search as a heat map over (𝜆s, 𝜆g) with fixed values of q = 2 and p = 3 for the
purpose of visualization, and fixed values of Td = 331 and Tini = 6 for the reasons described above. The figure provides the
insight that there is a threshold for 𝜆s (approximately 𝜆s ≥ 107) beyond which small tracking error can be achieved. The
intuitive explanation for this insight is that a large enough penalization on the softened initial condition constraint ensures
that the future predicted trajectory departs from an initial condition close to the actual initial condition. A similar trend
of the tracking performance as a function of 𝜆s is observed in other numerical case studies of DeePC.15,21 This suggests
that a tuning guideline for 𝜆s is to choose it as large as possible without causing the optimization solver to encounter
numerical issues.

Figure 4 also exposes a range for 𝜆g in which small tracking error is achieved. To investigate this further we consider the
grid search results for all combinations of q ∈ {1, 2} and p ∈ {3, 5}. Figure 5 shows the results from the grid search over 𝜆g
for a fixed value of 𝜆s = 7.5 × 108 and for all four combinations of q and p, for example, the line for q = 2, p = 3, is the slice
of Figure 4 at the fixed value of 𝜆s. In all cases a small tracking error is achieved for a range of 𝜆g, although the combination
q = 1, p = 3 performs relatively poorly. This range of 𝜆g with acceptable tracking error is wider for q = 2 than for q = 1,
which suggests that for the setup under consideration, 2-norm regularization is less sensitive to hyperparameter selection
than 1-norm regularization. This observation is supported by observing the heat maps for all four combinations q ∈ {1, 2}
and p ∈ {3, 5} as provided in Appendix B. Based on these insights, for the remainder of the results we fix the values
𝜆s = 7.5 × 108 and q = 2 and now investigate in more detail the influence of 𝜆g and the choice of output measurements
p ∈ {3, 5}.

To provide some intuition for how 𝜆g influences the optimal solution of the regularized DeePC optimization
problem (8) we now take a closer look at the closed loop trajectories resulting from 𝜆g ∈ {0,500}. Figure 6(A, B) shows the
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F I G U R E 5 Influence of 𝜆g, q, and p on the tracking error with the fixed value of 𝜆s = 7.5 × 108. Hence for the combination q = 2, p = 3
(solid thick line) this is the respective slice of Figure 4. The main observation is that the choice q = 2, that is, a 2-norm regularization on
decision variable g, provides a wider range of 𝜆g for which acceptable tracking error is achieved.

−1 0 1 2 3 4 5

0.5

1

1.5

2 (A) = 0

[m
ete

rs]

−1 0 1 2 3 4 5

0.5

1

1.5

2 (B) = 500

Time [seconds]

[m
ete

rs]

actual reference predictions

−1 0 1 2 3 4 5

0.5

1

1.5

2 (C) = 0

−1 0 1 2 3 4 5

0.5

1

1.5

2 (D) = 500

Time [seconds]

F I G U R E 6 Actual trajectories (solid) versus predicted trajectories from optimization problem (8) (dashed). (A, B) are simulated results
and (C, D) are experimental results. The top plots (A, C) are for 𝜆g = 0, and the bottom plots (B, D) are for 𝜆g = 500.

pz coordinate of the simulated closed loop trajectory over time (solid line), the reference yr (dotted line), and the trajectory
predicted by problem (8) at representative time instants (dashed line).

In the case of no regularization (Figure 6(A), 𝜆g = 0), the predictions do not correspond to the physics of the model and
the actual position diverges, that is, the quadcopter crashes. Since the data used in the Hankel matrix in (8) is obtained
from a nonlinear system and is corrupted by measurement noise, then the subspace spanned by the columns of the Hankel
matrix is all of R(m+p)(Tini+Tf). Hence, without regularization on the decision variable g, the Hankel matrix predicts that
every trajectory is possible. The value 𝜆g = 500 is selected from the grid search result where the DeePC algorithm achieved
the smallest tracking error (see Figure 5). We see in Figure 6(B) that desirable reference tracking is achieved and that
more physical predictions are computed by the regularized optimization problem (8).

An important distinction between the 𝜆g hyperparameter and the Td, Tini, and 𝜆s hyperparameters discussed above, is
that the 𝜆g regularization cannot be arbitrarily increased, shown also in Figure 5. The reason is that at a certain level the
regularization term r(g) in (8) dominates the tracking error term, leading to poor tracking performance and eventually
instability of the system. However, the range of 𝜆g resulting in small tracking error is large (e.g., 𝜆g ∈ [100, 10000] for
q = 2, p = 3 in Figure 5) indicating robustness to the choice of 𝜆g.

Hyperparameters 𝜆g and q, which parameterize the regularization function r(g) in optimization problem (8), are the
main parameters of the regularized DeePC algorithm that are not present in model-based control approaches. These
hyperparameters provide distributional robustness against the uncertainty in the system generating the input/output
data.19,27 Increasing the regularization weight𝜆g provides an increased level of robustness at the cost of being conservative.
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F I G U R E 7 Schematic showing the laboratory setup used to collect the experimental results described in Sections 3.3 and 3.4.

For intuition, the counterpart of 𝜆g in a model-based approach are model-order selection parameters that decide how
much of the data should be attributed to the model and how much to noise. Similarly, the choice of the regularization
norm q corresponds to the choice of a loss function in system identification, such as the average or the worst-case cost.
The range of values of 𝜆g and q which result in a small tracking error depends on the nature of the uncertainty in the
system, and the analysis above does not indicate a general guideline that we would expect to apply across multiple systems.
Interestingly, however, we observe here and in other applications20,21 that the combination 𝜆g = 500 and q = 2 performs
well. We will explore this empirical observation further in future work.

3.3 Real-world DeePC implementation

We now investigate how the insights gained through the simulation analysis of Section 3.2 transfer to laboratory exper-
iments on a real-world quadcopter, with the details of the experimental setup provided at the start of Section 3. The
experiments are performed as per Procedure 1 (see Section 3.2) and through the results we investigate: (a) whether the
insights from the simulation-based analysis are validated in experiments; (b) whether the hyperparameter values identi-
fied from the simulation-based analysis can be directly transferred to the laboratory environment; and (c) the reliability
of the tracking performance achieved.

Figure 7 provides a schematic of the laboratory setup used to collect the experimental results. The motion capture
system consists of multiple cameras placed around the flying space and connected to a dedicated computer. The soft-
ware running on the motion capture computer provides accurate measurements34 of the position and orientation of the
Crazyflie 2.036 quadcopter, i.e., measurements of (p⃗, 𝛾, 𝛽). These measurements are available to an offboard laptop where
the outer controller from Figure 2 is implemented. The control decisions of the outer controller, that is (ftot, 𝜔ref,x, 𝜔ref,y),
are sent via the Crazyradio link to the Crazyflie 2.0 where the firmware provided with the quadcopter runs an onboard
controller to track these.

The following analysis of performance on the real-world system focuses on hyperparameters 𝜆g and p as these
are hyperparameters for which the simulation-based analysis of Section 3.2 did not provide clear tuning guidelines.
On the other hand, the tuning guidelines found in Section 3.2 for hyperparameters Td, Tini, and 𝜆s generalized well
to the real-world quadcopter, and no significant new insights were observed when varying these hyperparameters in
the real-world. Hyperparameter q was set to the 2-norm because it reduces the number of decision variables in the
optimization problem (8) to be solved online and hence reduces the online computation time required. Moreover, the
simulation-based results in Section 3.2 suggest that similarly low tracking error performance is achievable with both
q ∈ {1, 2}.

Figure 6(C, D) shows the pz coordinate of the closed loop trajectory, reference, and DeePC predictions when imple-
mented on the quadcopter using the same hyperparameter values as Figure 6(A, B) respectively. The main feature
of Figure 6 is that the simulation and experimental results show qualitatively similar closed-loop trajectories (solid
lines) and predictions computed by the DeePC optimization problem (8) (dashed lines). This provides experimental
validation of the insight that regularization is required to predict physically reasonable trajectories when applying DeePC
to a real system. Moreover, a direct transfer of the hyperparameters selected via simulation to the experiments was possi-
ble, and we observed that tracking performance was not significantly improved by adjusting the regularization parameter
𝜆g. Appendix C provides a similar comparison for hyperparameter values above and below 𝜆g = 500, indicating that the
real-world implementation also achieves the best tracking performance at approximately 𝜆g = 500.
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To investigate the reliability of the performance observed in Figure 6(D), and also to investigate the influence of hyper-
parameter p, Procedure 1 was repeated in 28 experiments for each of p = 3 and p = 5. To capture different operating
conditions, 14 trials were performed with a fully charged battery and 14 with a partially depleted battery. Figures 8 and 9
and Table 1 summarize the results. Figure 8 shows the position time series data (solid grey) of all 28 trajectories for p = 3
(A, B, C) and for p = 5 (D, E, F), with the average at each time point (dashed) shown to assist with visualization. Figure 9
shows that same data as a top view.

Quantitatively, Table 1 shows that p = 3 achieves a lower tracking error compared to p = 5, in terms of mean, median,
and SD. This is likely due to the orientation measurements having higher noise than the position measurements. This
can be addressed by performing a weighted penalization of Ypg − yini using the covariance matrix of the measurement
noise. Qualitatively, Figures 8 and 9 suggest that there is less variation in the closed loop trajectories with p = 3 than
with p = 5. This result on the real-world quadcopter suggests than when applying DeePC to other systems, performance
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F I G U R E 8 Real-world quadcopter trajectories (solid grey) for 28 experiments, each with the same change in reference signal (dotted
black). Plots (A, B, C) are for p = 3 and plots (D, E, F) are for p = 5. The dashed lines show the average of the 28 experiments at each time point.
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F I G U R E 9 The same data as shown in Figure 8 shown as a top view on the (px , pz)-plane. Plot (A) is for p = 3 and plot (B) is for p = 5.
The dashed lines show the average at each time point of the 28 real-world trajectories (solid grey).
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T A B L E 1 Real-world experimental results comparison for p ∈ {3, 5}. Solve
time values reported use solver OSQP43 on a 64bit Ubunto 16.04 LTS, Intel
i7-8550U, 1.8GHz, 4 Cores, 16GB memory machine.

Tracking errora Solve time (ms)

p Mean Median SD Mean Median SD

3 75 69 21 4.14 3.92 1.49

5 93 86 23 6.66 5.70 4.78
aComputed as described in the Procedure 1.

may be improved by discarding measurements with higher noise as long as the system is observable with the remaining
measurements.

From the online computation perspective, Table 1 shows that optimization problem (8) is solved sufficiently fast for
both p = 3 and p = 5 considering that output measurements are provided for real-time implementation at 25 Hz. For the
case of p = 3, there were 451 optimization decision variables, 168 equality constraints, and 300 inequality constraints. As
a point of reference, the optimization problem in the output-feedback MPC approach of Section 3.4 had 283 optimization
decision variables, 208 equality constraints, and the same number of inequality constraints as in the DeePC.

A video of the quadcopter successfully tracking step trajectories and a figure 8 using the DeePC algorithm can be
found here: https://doi.org/10.3929/ethz-b-000493419.

3.3.1 Summary of hyperparameter selection insights

Through the simulation-based analysis of Section 3.2 and the real-world implementation, we gained insights on the
selection of the DeePC hyperparameters that we expect to assist with applying the DeePC to other systems. They are
summarized as:

• Choose Td as per (12), that is, choose it to be larger than both the minimum amount needed for persistency of excitation
in the LTI case and the minimum amount such that the Hankel matrix in (8) is square.

• Choose Tini by incrementally increasing it until steady tracking is observed. This coincides with a value which both
exceeds the lag 𝓁 of the system in the LTI case and provides good initial condition estimates in the presence of noisy
measurements.

• Choose 𝜆s as large as possible without causing the optimization solver to encounter numerical issues.
• In regards to p, performance may be improved by discarding measurements with higher noise as long as the system is

observable with the remaining measurements.

The selection of the regularization function r(g), parameterized in hyperparameters 𝜆g and q, depends on the nature
of the uncertainty in the system generating the input/output data and is expected to vary from one application to another.
Preliminary empirical observation suggests that the combination 𝜆g = 500 and q = 2 serves as a good initial choice. The
2-norm regularization is advantageous for real-time control because it reduces the number of decision variables in the
optimization problem (8) to be solved online and hence reduces the online computation time required.

3.4 Comparison with model-based control

The results in Section 3.3 show that DeePC Algorithm 1 achieves good performance for the step reference tracking task
specified in Procedure 1 in a data-driven fashion. We now present a model-based point of comparison that is developed
for linear systems. We take a first-principles approach that considers the linearization of the quadcopter dynamics (1)
about the hover equilibrium point, and we assume that the inner controller tracks the body rates reference signal without
dynamics or delays. We use a sampling time of 0.04 seconds, that is, 25 Hz, to convert the continuous-time linear model
to discrete-time. The resulting linear system model can be readily derived.44 Hence we consider a model based-controller
with eight states and three inputs, (p⃗, ̇⃗p, 𝛾, 𝛽) and (ftot, 𝜔ref,x, 𝜔ref,y), respectively.
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F I G U R E 10 Experimental comparison of data-enabled predictive control and model predictive control.

The model-based control method we implement is output-feedback MPC, as described in Section 2.2. Optimization
problem (3) is solved in a receding horizon fashion with the dynamics function f replaced by the linear-time invariant sys-
tem model described above, the cost function c given by (9), and all parameters {Tf ,Q,R, , ,ur} set to the same values
as used for the DeePC as given in Appendix A. The state estimate, x̂(t), is constructed by directly taking the measure-
ments for (p⃗, 𝛾, 𝛽), and ̇⃗p is estimated as the discrete time derivative of subsequent p⃗ measurements. Figure 10 compares a
trajectory of this first-principles MPC approach with that of the DeePC. Figure 10(A) shows the time series of the vertical
position pz, and Figure 10(B) shows the trajectory in the (px, py)-plane

Figure 10(A) shows that DeePC and MPC achieve qualitatively similar tracking performance for the vertical posi-
tion pz. Both have a similar rise time and settling time, with the most distinct feature being that the DeePC controller
overshoots the reference but then settles to a smaller steady-state offset. For MPC, this offset is present because there is
a model mismatch between the steady-state input, ur, and that needed to maintain the real-world quadcopter at steady
state. As the DeePC controller is provided with the same ur, this indicates that the structure of the DeePC controller is
able, to some extent, to correct for a mismatch of the steady state input ur provided. Figure 10(B) shows a clear disparity
between the tracking performance in the horizontal (px, py)-plane. Where the MPC follows an almost straight line trajec-
tory from the starting point to the target, the DeePC controller by contrast has quite different tracking behavior for the
px and py directions, a trend also observed in Figure 9 and in our simulation-based tests. This leaves open an interesting
direction for further investigation to understand why the DeePC controller produces a faster rise time for the px direction
compared to the py direction.

Overall, for the quadcopter application we see that DeePC performs similarly to MPC where a first-principles model is
available. This indicates the potential for DeePC to tackle applications where a first-principles model is either not available
or identifying all the necessary model parameters is not conceivable.

3.4.1 Model mismatch

In all of our analysis, the off-the-shelf quadcopter is maintained at a zero yaw angle 𝛼 by the inner controller. At that yaw
angle, the quadcopter body frame x(B), y(B) axes are aligned with the inertial frame x(I), y(I), as is demonstrated in the top
view (right) of Figure 1. Therefore, the x(I) and y(I) dynamics are decoupled from each other with respect to the body rate
reference control inputs of the outer controller𝜔ref,y and𝜔ref,x, respectively. In the real-world experimental setup, the yaw
angle measurement zero reference point must be calibrated by carefully aligning the quadcopter body frame with the
inertial frame, and some calibration error is expected. We now consider a case where there is a yaw calibration error of
approximately 30◦, which is exaggerated for the purpose of demonstration. The quadcopter body frame is rotated by 30◦
around the inertial z(I) axis at the yaw measurement zero reference point, leading to a misalignment in the inertial and
body frames that is unknown to the controller.

To capture this yaw miscalibration in simulation, an offset of 30◦ between the true yaw angle and the yaw angle
measurement available to the controller is induced. Figure 11 shows the simulation results of the quadcopter tracking a
1 meter step in the px direction with DeePC and output-feedback MPC. With no knowledge of the coupling between the
px and py dynamics induced by the misalignment of the inertial and body frames, the output-feedback MPC controller
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F I G U R E 11 Experimental comparison of data-enabled predictive control and model predictive control with a yaw angle mismatch.

causes the quadcopter to deviate considerably in the positive py direction then spiral around the target in the (px, py)-plane.
By contrast, the quadcopter takes a more direct path to its target under DeePC control. This suggests that the DeePC
controller implicitly learns a good mapping between the body rate references𝜔ref,x,𝜔ref,y, and the px, py dynamics from the
data collected at the misaligned frames of reference. The mapping is not perfect; a slight spiraling effect as the quadcopter
approaches its target is observed, but the improvement to the model-based approach which equally lacks knowledge of
the frames misalignment is apparent.

The yaw angle mismatch is an example of a bias error that can occur when adopting a linear model-based control
approach to a nonlinear system. Such a bias error is present when the linearization is performed at an incorrect operating
point. The DeePC algorithm provides some robustness to such a bias error, since it is able to adapt to unknown operating
conditions of the system from the data, and also by virtue of the regularization in optimization problem (8). One can
further consider a case where the yaw angle measurement calibration drifts slowly over time, and a periodic recalibration
is required for a model-based control approach to perform well. Instead of recalibration, the data in the Hankel matrix
in (8) can be updated online in the DeePC approach. We will explore this concept further in future work.

4 CONCLUSION

We demonstrated that the regularized DeePC algorithm is suitable for real-time control of a real-world quadcopter, thereby
bridging the gap between theory and practice. In the process, we performed a sensitivity analysis on the hyperparameters
of the DeePC algorithm in simulation, gaining key insights on their effect. These simulation takeaways generalized well
to the real-world quadcopter system, where minimal hyperparameter refining was performed. Through the real-world
implementation, it was demonstrated that the DeePC algorithm is computationally tractable and adequately solvable
in real-time, with solve times far beneath the real-time requirement. The insights from the simulation and real-world
experiments were condensed into a set of hyperparameter selection guidelines expected to assist with applying the DeePC
algorithm to other systems (see Section 3.3.1). Future work includes applying the DeePC algorithm on other real-worlds
systems for which no first-principles model can be derived.
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APPENDIX A. PARAMETERS FOR IMPLEMENTATION OF THE DEEPC ALGORITHM

The following lists the hyperparameters offered by the DeePC algorithm, and the design choices required to specify the
quadcopter tracking goal. The value specified in this list is used for all results unless otherwise indicated in the text.

• Td = 331, the total number of data points used to construct the Hankel matrices in (5),
• Tini = 6, the time horizon used for initial condition estimation,
• 𝜆s = 7.5 × 108, the weight on the softened initial condition constraint,
• 𝜆g = 500, the weight on the regularization of g,
• q = 2, the norm used to regularize g in (10),
• p = 3, the number of outputs used to construct the Hankel matrices in (5),
• Tf = 25, the prediction horizon, (corresponds to 1s in continuous time),

• Q =

(40 0 0
0 40 0
0 0 40

)
, the quadratic tracking error cost matrix,

• R =

(160 0 0
0 4 0
0 0 4

)
, the quadratic control effort cost matrix,
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•  , the control inputs constraints set, given by: ftot ∈ [0.1597, 0.4791], 𝜔ref,x, 𝜔ref,y ∈
[
− 𝜋

2
,
𝜋

2

]
,

•  , the outputs constraints set, given by: px, py ∈ [−4, 4], pz ∈ [0.1, 4], 𝛾, 𝛽 ∈
[
− 𝜋

6
,
𝜋

6

]
when p = 5. Note that the

constraints on the quadcopter orientation, 𝛾 , 𝛽, are omitted when p = 3,
• ur = (0.2747, 0, 0), the steady state hovering control inputs,

• Σy =

⎛⎜⎜⎜⎜⎝
1 × 10−8 5 × 10−9 0 0 0
5 × 10−9 1 × 10−8 0 0 0

0 0 1 × 10−8 0 0
0 0 0 1.22 × 10−5 0
0 0 0 0 1.22 × 10−5

⎞⎟⎟⎟⎟⎠
, the covariance matrix of measurement noise in sim-

ulation when p = 5. Note that when p = 3 the covariance matrix is the top left 3 × 3 block of Σy.

APPENDIX B. FURTHER RESULTS FOR THE GRID SEARCH ANALYSIS

For completeness, we include here the results for the grid search analysis, described in Section 3.2, for all hyperparameters
considered. Figure B1 bottom left is the same as shown in Section 3.2, and the other plots in Figure B1 are for the remaining
combinations of q ∈ {1, 2} and p ∈ {3, 5}.

F I G U R E B1 Influence of 𝜆g and 𝜆s on the tracking error for the four combinations of 1-norm or 2-norm regularization (q ∈ {1, 2}
respectively) on the decision variable g, and p ∈ {3, 5} outputs measured, as labeled on the axes. All other hyperparameters are fixed to the
values described in the Section 3.2. The coloured shading is restricted to the interval (36,120) to sufficiently display the shape of each plot. All
plots increase steeply for values greater than 120, and the plots are clipped for values greater than 120.

 10991239, 2021, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.5686 by C

ochraneC
hina, W

iley O
nline L

ibrary on [27/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Frnc.5686&mode=


8936 ELOKDA et al.

APPENDIX C. COMPARING SENSITIVITY TO 𝝀g IN SIMULATION AND EXPERIMENT

Figure C1 shows results similar to Figure 6 for comparing the closed loop trajectories (solid lines) and the predictions com-
puted by the DeePC optimization problem (8) (dashed lines). This shows the same trend that the performance observed
in the simulation-based analysis, Figure C1(A–C), is qualitatively similar to that observed in the real-world experiments,
Figure C1(D–F).

Qualitatively, the best 𝜆g chosen in simulation also performs best in reality and results in a similar closed loop trajec-
tory. A smaller value of 𝜆g results in a faster but more oscillatory response, and a larger value of 𝜆g results in a sluggish
response. This figure demonstrates that, despite unmodeled dynamics in simulation, the real-world system behaves
similarly to the simulation model when applying DeePC Algorithm 1. Consequently, simulation-based hyperparameter
selection was adapted on the real system with minimal adjustments required.
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F I G U R E C1 Actual trajectories (solid) versus predicted trajectories (dashed). The plots (A–C) are simulated results and (D–F) are
experimental results. To highlight the transferability from simulation to real-world experiments, for each value of 𝜆g (indicated on the plot)
all other hyperparameters have the same values. The hyperparameters are selected as those achieving the minimum tracking error in the
simulation-based analysis for the particular value of 𝜆g.
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