123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- import torch
- import torch.nn as nn
- import torch.optim as optim
- from torchvision import datasets, transforms
- import matplotlib.pyplot as plt
- # 检查是否有可用的GPU
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- # 定义数据预处理步骤
- transform = transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.1307,), (0.3081,))
- ])
- # 加载MNIST训练数据集
- train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
- train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
- # 加载MNIST测试数据集
- test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
- test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
- # 定义卷积神经网络模型
- class Net(nn.Module):
- def __init__(self):
- super(Net, self).__init__()
- self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
- self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
- self.fc1 = nn.Linear(320, 50)
- self.fc2 = nn.Linear(50, 10)
- def forward(self, x):
- x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2))
- x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2))
- x = x.view(-1, 320)
- x = nn.functional.relu(self.fc1(x))
- x = self.fc2(x)
- return x
- # 创建模型实例并将其移动到设备(GPU或CPU)
- model = Net()
- model.to(device)
- # 定义损失函数和优化器
- criterion = nn.CrossEntropyLoss()
- optimizer = optim.SGD(model.parameters(), lr=0.01)
- # 训练模型
- def train_model():
- model.train()
- for epoch in range(20):
- running_loss = 0.0
- for batch_idx, (data, target) in enumerate(train_loader):
- data, target = data.to(device), target.to(device)
- optimizer.zero_grad()
- output = model(data)
- loss = criterion(output, target)
- loss.backward()
- optimizer.step()
- running_loss += loss.item()
- if batch_idx % 100 == 0:
- print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
- epoch + 1, batch_idx * 64, len(train_loader.dataset),
- 100. * batch_idx / len(train_loader), running_loss / (batch_idx + 1)))
- print('====> Epoch: {} Average Loss: {:.4f}'.format(epoch + 1, running_loss / len(train_loader)))
- # 测试模型
- def test_model():
- model.eval()
- test_loss = 0
- correct = 0
- with torch.no_grad():
- for data, target in test_loader:
- data, target = data.to(device), target.to(device)
- output = model(data)
- test_loss += criterion(output, target).item()
- pred = output.argmax(dim=1, keepdim=True)
- correct += pred.eq(target.view_as(pred)).sum().item()
- test_loss /= len(test_loader)
- accuracy = correct / len(test_loader.dataset)
- print('Test set: Average loss: {:.4f}, Accuracy: {:.2f}%'.format(test_loss, 100 * accuracy))
- if __name__ == "__main__":
- train_model()
- test_model()
|